بهبود شاخص‏های جوانه‎زنی و فعالیت آنزیم‏های آلفا و بتا آمیلاز در بذرهای حاصل از ارقام گلرنگ (Carthamus tinctorius L.) با استفاده از محلول‏پاشی سیلیسیم و نیکل در خاک شور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، رشته زراعت، دانشگاه آزاد اسلامی واحد فسا

2 دانشگاه آزاد واحدفسا گروه کشاورزی

3 استادیار، گروه کشاورزی ، دانشگاه آزاد اسلامی واحد فسا

چکیده

تنش شوری سبب کاهش کیفیت بذر گیاهان می‏شود، اما غلظت‏‏های مناسب سیلیسیم و نیکل می‏تواند سبب بهبود شاخص‏های جوانه‎زنی در بذرهای تولید شده گردد. این پژوهش به صورت فاکتوریل در قالب طرح بلوک‏های کامل تصادفی در سال 1398 در شهرستان حاجی آباد، هرمزگان، ایران انجام شد. عامل اول شامل چهار رقم گلرنگ صفه، محلی اصفهان، پدیده و گل‏مهر و عامل دوم هفت سطح محلول‏پاشی شامل شاهد و محلول‏پاشی نیکل با غلظت 100، 200 و 300 میلی‏گرم در لیتر و محلول‏پاشی سیلیسیم با غلظت 100، 150 و 200 میلی‏گرم در لیتر بود. نتایج نشان داد که محلول‏پاشی 100 میلی‏گرم در لیتر نیکل و 200 میلی‏گرم در لیتر سیلیسیم به ترتیب سبب افزایش 10 و 18 درصدی پتاسیم گردید. محلول‏پاشی 200 میلی‏گرم در لیتر سیلیسیم سبب افزایش 17 و 12 درصدی فعالیت آنزیم آلفا و بتا آمیلاز گردید. از سوی دیگر رقم گل‌مهر و پس از آن رقم صفه درصد و سرعت جوانه‏زنی و بنیه بذر بیشتری در بذرهای حاصل از گیاه مادری در شرایط تنش شوری نشان دادند، اما رقم پدیده دارای کمترین این صفات بود. محلول‏پاشی 200 میلی‏گرم در لیتر سیلیسیم در مقایسه با شاهد به ترتیب سبب افزایش 23 و 25 درصدی بنیه بذر در ارقام صفه و گل‌مهر شد، اما غلظت 300 میلی‏گرم در لیتر نیکل، سبب کاهش 24 و 19 درصدی در این ارقام شد. در مجموع نتایج این پژوهش تأثیر مثبت محلول‏پاشی غلظت‏های 150 و 200 میلی‏گرم در لیتر سیلیسیم را در بهبود کیفیت بذرهای ارقام مختلف گلرنگ تحت تنش شوری نشان داد.

کلیدواژه‌ها


Afzal, I., R. Shabir, and S. Rauf. 2019. Seed production technologies of some major field crops. Pp 655-678. In M. Hasanuzzaman(eds.)Agronomic Crops. Springer, Singapore.
Ain, Q., J. Akhtar, M. Amjad, M. Haq, and Z. Saqib. 2016. Effect of enhanced nickel levels on wheat plant growth and physiology under salt stress. Commun. Soil Sci. Plant Anal. 47: 2538–2546.
Al-Garni, S.M.S., M.M.A. Khan, and A. Bahieldin. 2019. Plant growth-promoting bacteria and silicon fertilizer enhance plant growth and salinity tolerance in Coriandrum sativum. J. Plant Interact. 14: 386-396.
Ali, M., S. Afzal, A. Parveen, M. Kamran, M.R. Javed, G.H. Abbasi, Z. Malik, M. Riaz, S. Ahmad, and M.S. Chattha. 2021. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiol. Biochem. 158: 208-218.
Alzahrani, Y., A. Kuşvuran, H.F. Alharby, S. Kuşvuran, and M.M. Rady. 2018. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol. Environ. Saf. 154: 187–196.
Ameen, N., M. Amjad, B. Murtaza, G. Abbas, M. Shahid, M. Imran, M. A. Naeem, and N. K. Niazi. 2019. Biogeochemical behavior of nickel under different abiotic stresses: toxicity and detoxification mechanisms in plants. Environ. Sci. Pollut. Res. 26: 10496–10514.
Anonymus. 2010. International rules for seed testing. International Seed Testing Association (ISTA). Seed Science and Technology. Zurich, Switzerland.
Attarzadeh, M., H.R. Balouchi, M. Dehnavi, A. Salehi, and, M. Rajaie2019. Response of germination and electrical conductivity of seeds produced by Echinacea purpurea's mother plants under the influence of biological fertilizers and drought stress. Iranian J. Seed Sci. Technol. 8: 185-200. (In Persian, with English Abstract)
Barcelo, J., and C. Poschenrieder. 2004. Structural and ultrastructural changes in heavy metal exposed plants. Pp 223–248. In M.N.V. Prasad (ed.) Heavy metal stress in plants, 3rd ed. Springer, Berlin, Germany.
Bassil, E.S., and S. R. Kaffka. 2002. Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: I. Consumptive water use. Agric. Water. Manage. 54: 67-80.
Bernfeld, P. 1955. Amylase α and β. Methods in Enzymology. 1: 149-158.
Bijanzadeh, E., S. M. Moosavi, and F. Bahadori. 2022. Quantifying water stress of safflower (Carthamus tinctorius L.) cultivars by crop water stress index under different irrigation regimes', Heliyon. 8: e09010.
Chahardoli, A., N. Karimi, X. Ma, and F. Qalekhani. 2020. Effects of engineered aluminum and nickel oxide nanoparticles on the growth and antioxidant defense systems of Nigella arvensis L. Sci. Rep. 10: 1-11.
Copeland, L.O., and M.B. McDonald, 2001. Seed vigor and vigor tests. Pp 121-144. In L.O. Copeland and M.B. McDonald (eds.). Principles of Seed Science and Technology. 4th ed. Kluwer Academic Publishing Group, Norwell, Massachusetts, U.S.
Czajka, K.M., P. Michael, and K. Nkongolo. 2019. Differential effects of nickel dosages on in vitro and in vivo seed germination and expression of a high affinity nickel-transport family protein (AT2G16800) in trembling aspen (Populus tremuloides). Ecotoxicology. 28: 92-102.
Dehshiri, A., and A. Modares Sanavy. 2015. Assessment of seed germination and seedling early growth characteristics of canola (Brassica napus L.) produced from original plants under salinity stress. Iranian J. Seed Sci. Technol. 4: 97-106. (In Persian, with English Abstract)
Dornbos, D. L. 2020. Production environment and seed quality. Pp 119-152. In R.E. Gough (ed.) Seed quality. CRC Press, Boca Raton, U.S.
Emongor, V., O. Oagile, D. Phuduhudu, and P. Oarabile. 2017. Safflower production. Botsawana University of Agriculture and Natural Resources. Impression House Publishers. Industrial West, Gaborone, Botswana.
Garg, N. and P. Bhandari. 2016. Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status. K+ /Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. J. Plant Growth Regul. 78: 371–387.
Gimbi, D. M., and N. Kitabatake. 2002. Changes in alpha-and beta-amylase activities during seed germination of African finger millet. Int. J. Food Sci. Nutr. 53(6): 481-488.
Gou, T., X. Chen, R. Han, J. Liu, Y. Zhu, and H. Gong. 2020. Silicon can improve seed germination and ameliorate oxidative damage of bud seedlings in cucumber under salt stress. Acta Physiol. Plant. 42: 1-11.
Gupta, A. 2022. Mainstreaming of underutilized oilseed safflower crop through biotechnological approaches for improving economic and environmental sustainability. Pp 397-418. A. Sudipti, K. Ashwani, O. Shinjiro, Y. Yuan –Yeu (eds.) Biotechnological Innovations for Environmental Bioremediation. Springer, Singapore.
Haghighi, M., Z. Afifipour, and M. Mozafarian. 2012. The alleviation effect of silicon on seed germination and seedling growth of tomato under salinity stress. Veg. Crops Res. Bull. 76: 119-126.
Houshmand, S., A. Arzani, S. A. Maibody, and M. Feizi. 2005. Evaluation of salt-tolerant genotypes of durum wheat derived from in vitro and field experiments. Field Crop Res. 91: 345-354. 
Hu, Y., and U., Schmidhalter, 2005. Drought and salinity: a comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 168: 541-549.
ISTA. 2003. Handbook for seedling evaluation (3rd.ed). International Seed Testing Association. Zurich, Switzerland.
Johnson, R., and J.T. Puthur. 2021. Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiol. Biochem. 162: 247-257.
Kanellou, E., M. Papafotiou, G. Economou, and N. Ntoulas. 2016. Testing soil solarization as an alternative method for weed, suppression at archaeological sites. Presented in VIth International Conference on Landscape and Urban Horticulture. Athens, Greece on 20-25th June 2016. ISHS Acta Hortic.1189: 69-72.
Kheybari, M., A.H. Shirani Rad, S. Seyfzadeh, I. Hadidi, and H.R. Zakerin. 2019. Investigation of sowing date of mother plant effect on germination indices of autumn rapeseed cultivars and lines. Iranian J. Seed Sci. Technol. 7: 237-246. (In Persian, with English Abstract)
Kordrostami, M., and B. Rabiei. 2019. Salinity stress tolerance in plants: physiological, molecular, and biotechnological approaches. Pp 101-127. In M. Hasanuzzaman, Kh. Rehman Hakeem, K. Nahar, H.F. Alharby. Plant abiotic stress tolerance. Springer, Cham.
Kumar, O., S. K. Singh, A. M. Latare, and S. N. Yadav. 2018. Foliar fertilization of nickel affects growth, yield component and micronutrient status of barley (Hordeum vulgare L.) grown on low nickel soil, Arch. Agron. Soil Sci. 64: 1407-1418.
Lowry, C. J., and R.G. Smith. 2018. Weed Control Through Crop Plant Manipulations. Pp 73-96. In Kh. Jabran, and B. Chauhan (eds.) Non-Chemical Weed Control. Academic Press, Amsterdam.
Maguire, J. D. 1962. Speed of germination – aid in selection and evaluation for seedling emergence and vigour. Crop Sci. 2: 176-177.
McGuire, S., and L. Sperling. 2013. Making seed systems more resilient to stress. Global Environ. Change. 23: 644-653.
Miransari, M., and D. Smith. 2014. Plant hormones and seed germination. Environ. Exp. Bot. 99: 110-121.
Morales-Cedillo, F., A. Gonzalez-Solis, L. Gutiérrez-Angoa, D. L. Cano-Ramírez, and M. Gavilanes-Ruiz. 2015. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase. Plant Cell Rep. 34: 617-629.
Naveed, M., H. Sajid, A. Mustafa, B. Niamat, Z. Ahmad, M. Yaseen, M. Kamran, M. Rafique, S. Ahmar, and J. Chen. 2020. Alleviation of salinity-induced oxidative stress, improvement in growth, physiology and mineral nutrition of canola (Brassica  napus L.) through calcium-fortified composted animal manure. Sustainability. 12 (3): 846. https://doi.org/10.3390/su12030846
Nguyen, C.D., J. Chen, D. Clark, H. Perez, and H. Huo. 2021. Effects of maternal environment on seed germination and seedling vigor of Petunia× hybrida under different abiotic stresses. Plants. 10: 581.
Nichols, M. A., and W. Heydecker. 1986. Two approaches to the study of germination date. Proc. Int. Seed Test. 33: 531-540.
Nikobin, M., A. Soltani, A. Faraji, and D.F. Mirdavar. 2009. Effect of sowing date at seed filling period on canola (Brassica Napus) seed vigor. J. Plant Prod. 16: 87-100.
Ostadian Bidgoli, R., H.R. Balouchi, E. Soltani, and A. Moradi. 2017. Effects of temperature and water potential on seed germination characteristics in Safflower (Carthamus tinctorius L.) Sofeh var. Iranian J. Seed Sci. Technol. 6: 11-22. (In Persian, with English Abstract)
Patterson, B., E. Macrae. and I. Ferguson. 1984. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Annu. Biochem. 139: 487-492.
Rahmani, V., M Movahhedi Dehnavi, H.R. Balouchi, A. R. Yadavi, and M. Hamidian. 2022. Silicon can improve nutrient uptake and performance of black cumin under drought and salinity stresses. Commun. Soil Sci. Plant Anal, DOI: 10.1080/00103624.2022.2112590
Rajjou, L., M. Duval, K. Gallardo, J. Catusse, J. Bally, C. Job, and D. Job. 2012. Seed germination and vigor. Annu. Rev. Plant Biol. 63: 507-533.
Reed, R.C., K.J. Bradford, and I. Khanday. 2022. Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity. 1-10.
Rios, J.J., M.C. Martínez-Ballesta, J.M. Ruiz, B. Blasco, and M. Carvajal. 2017. Silicon-mediated improvement in plant salinity tolerance: the role of aquaporins. Front. Plant Sci. 8: 948.
Sadeghi, H., H.H. Sharifabad, A. Hamidi, G. Nourmohammadi, and H. Madani. 2017. Evaluation the effects of mother plant planting date and density on germination and vigor of soybean seed. Seed Sci. Technol. 6: 219-233.
Salehi, M., and S. Pourdad. 2021. Evaluation and selection of safflower (Carthamus tinctorius L) genotypes under salinity stress conditions. Seed and Plant. 37: 83-102
Shahzad, S., S. Ali, R. Ahmad, S. Ercisli, and M.A. Anjum. 2022. Foliar application of silicon enhances growth, flower yield, quality and postharvest life of tuberose (Polianthes tuberosa L.) under saline conditions by improving antioxidant defense mechanism. Silicon. 14: 1511-1518.
Soleymanifard, A., M. Mojaddam, S. Lack, and M. Alavifazel. 2022. Effect of azotobacter chroococcum and nitrogen fertilization on some morphophysiological traits, grain yield, and nitrogen use efficiency of safflower genotypes in rainfed conditions. Commun. Soil Sci. Plant Anal. 53 (6): https://doi.org/10.1080/00103624.2022.2028815.
Souri, Z., K. Khanna, N. Karimi, and P. Ahmad. 2021. Silicon and plants: current knowledge and future prospects. J. Plant Growth Regul..40: 906-925.
Sun, Y., J. Xu, X. Miao, X. Lin, W. Liu, and H. Ren. 2021. Effects of exogenous silicon on maize seed germination and seedling growth. Sci. Rep. 11: 1-13.
Wang, C., Z. Wei, M. Feng, L. Wang, and Z. Wang. 2014. The effects of hydrox-ylated multiwalled carbon nanotubes on the toxicity of nickel to Daphnia magna under different pH levels. Environ. Toxicol. Chem. 33: 2522–2528.
Wu, H., X. Zhang, J.P. Giraldo, and S. Shabala. 2018. It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and soil. 431: 1-17.
Yadav, S. P., R. Bharadwaj, H. Nayak, R. Mahto, R. K. Singh, and S. K. Prasad. 2019. Impact of salt stress on growth, productivity and physicochemical properties of plants: Int. J. Chem. Stud. 7: 1793-1798.
Yeilaghi, H., A. Arzani, and M. Ghaderian. 2015. Evaluating the contribution of ionic and agronomic components toward salinity tolerance in safflower. Agron. J. 107:  2205-2212.
Yusuf, M., Q. Fariduddin, S. Hayat, and A. Ahmad. 2011. Nickel: an overview of uptake, essentiality and toxicity in plants. Bull. Environ. Contam. Toxicol. 86: 1–17.
Zorb, C., CM. Geilfus, and KJ. Dietz. 2019. Salinity and crop yield. Plant Biol. 21: 31-38.