تعیین دماهای کاردینال دو گونه ماشک گل خوشه‌ای (Vicia sativa; Vicia pannonica) در واکنش به دما و پتانسیل‌های مختلف آب با استفاده از مدل دو تکه‌ای

نوع مقاله: مقاله پژوهشی

نویسندگان

رفسنجان- دانشگاه ولی‌عصر (عج) رفسنجان- دانشکده کشاورزی- گروه زراعت و اصلاح نباتات

چکیده

این تحقیق با هدف بررسی جوانه‌زنی دو گونه ماشک گل خوشه‌ای (Vicia pannonicaوVicia sativa) تحت دماهای (5، 10، 15، 20، 25، و30 درجه سانتی‌گراد) و پتانسیل‌های آبی مختلف (0، 2-، 4-، 6-، 8- و 10- بار) در آزمایشگاه زراعت دانشگاه ولی عصر رفسنجان به صورت فاکتوریل سه عامله در قالب طرح کاملاً تصادفی در چهار تکرار اجرا شد. رابطه بین سرعت جوانه‌زنی و دما با استفاده از مدل دو تکه‌ای مورد ارزیابی قرار گرفت. نتایج نشان داد که در پتانسیل‌های مختلف آب، دمای پایه برای جوانه‌زنی گونه Vicia pannonica بین 3.65- تا 1.39، دمای مطلوب بین 23.99 تا 25.57 و دمای سقف بین 30 تا 58.54 درجه سانتی‌گراد بود. ساعت زیستی برای جوانه‌زنی این گونه نیز در پتانسیل‌های مختلف آب بین 32.29 تا 74.97 ساعت بود. همچنین در پتانسیل‌های مختلف آب، دمای پایه برای جوانه‌زنی گونه Vicia sativa بین 3.54- تا 1.39، دمای مطلوب بین 22.70 تا 25.64 و دمای سقف بین 30 تا 42.28 درجه سانتی‌گراد بود. ساعت زیستی برای جوانه‌زنی این گونه نیز در پتانسیل‌های مختلف آب بین 33.10 تا 83.54 ساعت بود. نتایج مربوط به سرعت جوانه­ زنی در هر دو گونه حاکی از آن بود که با افزایش پتانسیل آب، سرعت جوانه­ زنی کاهش یافت. در تمامی پتانسیل‌های آب روند سرعت جوانه‌زنی تا دمای 25 درجه سانتی‌گراد افزایشی و پس از آن کاهشی بود. از این پارامترها و روابط بدست آمده می‌توان برای پیش بینی زمان تا جوانه­ زنی یا سیز شدن این دو گونه ماشک گل خوشه­ ای در پتانسیل­ های مختلف آب استفاده نمود.

کلیدواژه‌ها


Ajam Norouzi, H., A. Soltani, E. Majidi, and Homaei, M. 2007. Modeling response of emergence to temperature in faba bean under field condition. J Agric Sci. Nat. Res. 14 (4): 100-111. (In Persian, with English Abstract.)

Akram Ghaderi, F., A. Soltani, and H.R. Sadeghipour. 2008. Effect of temperature and water potential on germination of medicinal pumpkin (Cucurbita pepo. convar. pepo var. styriaca), black cumin (Nigella sativa L.) and borage (Borago officinalis L.). J. Agric. Sci. Nat. Res. 15(5).1-20.In Persian, with English Abstract.)

Alvarado, V., and K.J. Bradford, 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ. 25: 1061-1069.

Alvarado, V. 2000. Hydrothermal time model of boranical potato seed germination. M.Sc thesis. University of California. Davis.

Bradbeer, J.W. 1988. Seed Dormancy and Germination. Blackie, Glasgow. pp: 146.

De Villiers, A.J., M.W. Van Rooyrn, G.K. Theron, and H.A. Van De Venter. 1994. Germination of three namaqaland pioneer species, as influenced by salinity, temperature and light. Seed Sci. Technol. 22: 424-423.

Forcella, F., R.L. Benech Arnold, R. Sanchez, and C.M. Ghersa. 2000. Modeling seedling emergence. Field Crops Res.67: 123-139.

Ghaderi-Far.F, A, Soltani, and H. R. Sadeghipour. 2009. Evaluation of nonlinear regeression models in quantifying germination rate of medicinal pumpkin (Cucurbita pepo L. subsp. Pepo. Convar. Pepo var. styriaca Greb), borago (Borago officinalis L.) and black cumin (Nigella sativa L.) to temperature. 2009. J Agric. Sci. Nat. Res. 16(4):1-19. . (In Persian, with English Abstract.)

Guan, B., D. Zhou, H. Zhang, Y. Tian, W. Japhet, and P. Wang. 2009. Germination responses of Medicago ruthenica seeds to salinity, alkalinity, and temperature. J. Arid Environ. 73: 135–138.

Iannucci, A., N. di Fonzo, and P. Martiniello. 2000. Temperature requirements for seed germination in four annual clovers grown under tow irrigation treatments. Seed Sci. Technol. 28: 59-66.

Kamkar, B., A. Koocheki, M.N. Mahallati, and M.P.R. Moghaddam. 2006. Cardinal temperatures for germination in three millet species. Asian J. Plant Sci. 5: 316-319.

Kebreab, E., and A.J. Murdoch. 2000. The effect of water stress on the temperature range for germination of Orobanches aegyptiaca seeds. Seed Sci. Res. 10: 127-133.

Khalili, N., A. Soltani, E. Zeinali, and F. Ghaderi far, 2013. Evaluation of nonlinear regression models to quantify barley germination rate response to temperature and water potential. Electronic J Crop Prod. 7(4): 23-40. (In Persian, with English Abstract.)

Latifi, N., A. Soltani, and D. Spanner. 2004. Effect of temperature on germination components in canola cultivars. Iranian J. Agric. Sci. 35(2): 313-321. (In Persian, with English Abstract.)

Madakadze, I.C., B. Prithiviraj, K.A. Stewart, P.R. Peterson, B.E. Coulman, and D.L. Smith. 2001. Variation in base temperatures for germination in warm season grasses. Seed Sci Technol. 29: 31-38.

Mahmoodi, A., E. Soltani, and H. Barani. 2008. Germination response to temperature of snail medic (Medicago scutellata L.). Electronic J. Crop Prod. 1(1): 54-63. (In Persian, with English Abstract.)

Michel, B.E., and M.R. Kaufmann. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 72: 66-70.

Nozari Nejad, M., E. Zeinali, A. Soltani, E. Soltani, and B.Kamkar. 2013. Quantify wheat germination rate response to temperature and water potential. Electronic J Crop Prod. 6(4): 117-135. (In Persian, with English Abstract.)

Soltani, A. 2007. Application of SAS in statistical analysis. 2nd ed., JDM Press, Mashhad, Iran, 182p.

Soltani, A., and V. Maddah. 2010. Simple, applied programs for education and research in agronomy. Niak Press.

Soltani, A., M.J. Robertson, B. Torabi, M. Yousefi Daz, and R. Sarparast. 2006. Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Field Crop Res.138: 156-167.

Tan, D.K.Y., A.H. Wearing, K.G. Rickert, and C.J. Birch. 1997. A systems approach to developing model that predicts crop ontogeny and maturity in broccoli in south-east Queensland. In: Wollin, A.S. and K.G. Rickert. (Eds.), Third Australia and New Zealand Systems Conference Proceedings Linking People, Nature, Business and Technology. The University of Queensland, Gatton, 179-187.

Torabi, B., M. Attarzadeh, and A. Soltani, 2013. Germination response to temperature in different safflower (Carthamus tinctorius) cultivars. Seed Technol. J. 35: 47-59.

Torabi. B., and A. Soltani. 2013. Quantifying response of chickpea emergence to air temperature. J. Crop Prod. Processing. 2(6): 109-120. (In Persian, with English Abstract.)

Toyomasu, T., H. Tsuji, H, Yamane, M, Nakayama, I. Yamaguchi, N. Murofushi, N. Takahashi, and Y. Inoue. 1993. Light effects on endogenous levels of gibberellins in photoblastic lettuce seeds. J. Plant Growth Regul. 12: 85–90.

Wang, H., H. Cutforth, T. McCaig, G. McLeod, K. Brandt, R. Lemke, T. Goddard, and C. Sprout, 2009. Predicting the time to 50% seedling emergence in wheat using a beta model.Wagen. Life Sci. J. 57: 65-71.

Zeinati, E., A. Soltani, S. Galeshi, and S.J. Sadati. 2010. Cardinal temperatures, response to temperature and range of thermal tolerance for seed germination in wheat (Triticum aestivum L.) cultivars. Electronic J. Crop Prod. 3(3): 23-42. (In Persian, with English Abstract.)