کاربرد مدل هیدروترمال‌تایم جهت تعیین دماهای کاردینال جوانه‌زنی در گیاهان (مطالعه موردی؛ گاوپنبه(Abutilon theophrasti med.))

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه کشاورزی دانشگاه پیام نور، تهران

2 مربی مرکز تحقیقات علوم کشاورزی و منابع طبیعی گرگان

3 کارشناس گروه علوم باغبانی دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 ..............

چکیده

به منظور ارزیابی توانایی مدل هیدروترمال‌تایم برای توصیف جوانه‌زنی در گیاه گاوپنبه مطالعه‌ای تحت شرایط مختلف دمایی و رطوبتی اجرا شد. بدین منظور، آزمایشی در هشت سطح دمایی (15، 20، 25، 30، 35، 37، 40 و 42 درجه سانتی‌گراد) و پنج سطح پتانسیل آب (صفر، 0.18-، 0.36-، 0.54- و 0.72- مگاپاسکال) انجام شد. درصد و سرعت جوانه‌زنی به طور معنی‌داری تحت تأثیر پتانسیل آب قرار گرفتند. مدل هیدروترمال‌تایم مقدار دماهای پایه، بهینه و سقف برای این گیاه و در شرایط مطلوب رطوبتی (صفر مگاپاسکال) را به‌ترتیب 11.8، 35.4 و 45.2 درجه سانتی‌گراد تعیین نمود. ثابت هیدروتایم از دمای پایه تا دمای بهینه کاهش یافت و در دماهای بالاتر از دمای بهینه مقدار آن ثابت (24 مگاپاسکال در ساعت) باقی ماند. در دماهای بالاتر از دمای بهینه، مقدار پتانسیل آب پایه به طور خطی افزایش یافت. شیب رابطه خطی بین پتانسیل پایه و دماهای بالاتر از دمای بهینه برابر 0.1011 مگاپاسکال در درجه سانتی‌گراد در ساعت برآورد گردید (یعنی به ازای افزایش یک درجه دما بالای دمای بهینه مقدار پتانسیل پایه برابر با 0.1011 مگاپاسکال در درجه سانتی‌گراد در ساعت کاهش خواهد یافت). پتانسیل آب پایه در دماهای پایین‌تر از دمای بهینه تقریباً ثابت و معادل 0.91- مگاپاسکال تعیین شد. به طور کلی، با استفاده از مدل هیدروترمال‌تایم به سادگی می‌توان پاسخ جوانه‌زنی گاوپنبه را در کلیه شرایط دمایی و رطوبتی به طور دقیق کمّی‌سازی نمود.

کلیدواژه‌ها


Allen, P. 2003.When and how many? Hydrothermal models and the prediction of seed germination. New Phytol. 158: 1-3.

Alvarado, V., and K. Bradford. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ. 25: 1061-1069.

Atashi, S., E. Bakhshandeh., M. Mehdipour., M. Jamali, and J.A. Teixeira da Silva. 2015. Application of a hydrothermal time seed germination model using the Weibull distribution to describe base water potential in zucchini (Cucurbita pepo L.). J. Plant Growth Regul. 34: 150-157.

Atashi, S., E. Bakhshandeh., Z. Zeinali., E. Yassari, and J.A. Teixeira da Silva. 2014. Modeling seed germination in Melisa officinalis L. in response to temperature and water potential. Acta Physiol. Plantarum. 36: 605-611.

Bakhshandeh, E., and M. Gholamhossieni. 2018. Quantification of soybean seed germination response to seed deterioration under PEG-induced water stress using hydrotime concept. Acta Physiol. Plantarum. 40:126.

Bakhshandeh, E., M.Jamali, E. Afshon, and M. Gholamhossieni. 2017. Using hydrothermal time concept to describe sesame (Sesamum indicum L.) seed germination response to temperature and water potential. Acta Physiol. Plantarum. 39:1-9.

Bakhshandeh, E., S. Atashi., M. Hafez-Nia, and H. Pirdashti. 2013. Quantification of the response of germination rate to temperature in sesame (Sesamum indicum). Seed Sci. Technol. 41: 469-473.

Bakhshandeh, E., S. Atashi., M. Hafez-Nia., H. Pirdashti, and J.A. Teixeira da Silva. 2015. Hydrothermal time analysis of watermelon (Citrullus vulgaris cv.‘Crimson sweet’) seed germination. Acta Physiol Plantarum. 37: 1-8.

Baskin, C.C., and J.M. Baskin. 2014. Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego.

Bewley, J.D., K. Bradford, and H. Hilhorst. 2013. Seeds: physiology of development, germination and dormancy. 3rd edn. Springer, New York.

Bradford, K.J. 1990. A water relations analysis of seed germination rates. Plant Physiol. 94: 840-849.

Bradford, K.J. 1995. Water relations in seed germination. Seed Dev. Germ. 1: 351-396.

Bradford, K.J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 50: 248-260.

Bradford, K.J., and D.W. Still. 2004. Applications of hydrotime analysis in seed testing. Seed Technol. 26: 75-85.

Dahal, P., and K.J. Bradford. 1990. Effects of priming and endosperm integrity on seed germination rates of tomato genotypes II. Germination at reduced water potential. J. Exp. Bot. 41: 1441-1453.

Dahal, P., and K.J. Bradford. 1994. Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Sci. Res. 4: 71-80.

Derakhshan, A., and J. Gherekhloo. 2015. Comparison of hydrothermal time models to seed germination modeling of Phalaris minor on the basis of Normal, Weibull and Gumbel distributions. (In Persian, with English Abstract) J. Plant Prod. Res. 22: 39-57.

García, A.L., J. Recasens.,  F. Forcella., J. Torra, and A. Royo-Esnal. 2013. Hydrothermal emergence model for ripgut brome (Bromus diandrus). Weed Sci. 61: 146-153.

Gummerson, R. 1986. The effect of constant temperatures and osmotic potentials on the germination of sugar beet. J. Exp. Bot. 37: 729-741.

Kebreab, E., and A. Murdoch. 1999. Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. J. Exp. Bot. 50: 655-664.

Mesgaran, M., H. Mashhadi., H. Alizadeh., J. Hunt., K. Young, and R. Cousens. 2013. Importance of distribution function selection for hydrothermal time models of seed germination. Weed Res. 53: 89-101.

Michel, B.E., and M.R. Kaufmann. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51: 914-916.

Rowse, H., and W.E. FinchSavage. 2003. Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub‐and supra‐optimal temperatures. New Phytol. 158: 101-108.

Sadeghloo, A., J. Asghari, and F. Ghaderi-Far. 2013. Seed germination and seedling emergence of velvetleaf (Abutilon theophrasti) and barnyardgrass (Echinochloa crus-galli). Planta Daninha. 31: 259-266.

Wang, R. 2005. Modeling seed germination and seedling emergence in winterfat (Krascheninnikovia lanata (Pursh) ADJ Meeuse & Smit): Physiological mechanisms and ecological relevance. PhD thesis, University of Saskatchewan.

Watt, M.S., M. Bloomberg, and W.E. FinchSavage. 2011. Development of a hydrothermal time model that accurately characterises how thermoinhibition regulates seed germination. Plant Cell Environ.  34: 870-876.

Watt, M.S., V. Xu, and M. Bloomberg. 2010. Development of a hydrothermal time seed germination model which uses the Weibull distribution to describe base water potential. Ecol. Model. 221: 1267-1272.

Zhang, H., L. Irving., Y. Tian, and D. Zhou. 2012. Influence of salinity and temperature on seed germination rate and the hydrotime model parameters for the halophyte, Chloris virgata, and the glycophyte, Digitaria sanguinalis. South Afr. J. Bot. 78: 203-210.