پاسخ مؤلفه های رویشی و فیزیولوژیکی گیاه گندم به شوری و تأثیر پیش تیمار زیستی بذر با قارچ‏ های Piriformospora indica و Trichoderma virens در بهبود سازگاری گیاه به تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد/پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، مازندران.

2 دانشیار/پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، مازندران

3 دکتری زراعت/ دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

چکیده

به­ منظور بررسی روند پاسخ صفات رویشی و فیزیولوژیک گندم رقم مروارید به پیش­ تیمار زیستی قارچ‏های Piriformospora indica(Pi وTrichoderma virens(Trich، در شرایط شور،آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار به اجرا درآمد. عامل‏ های آزمایش شامل هفت سطح شوری (صفر، 40، 80، 120، 160، 200، 240 میلی ­مولار NaCl) و پیش ‏تیمار زیستی قارچی شامل چهار سطح (عدم تلقیح، تلقیح با قارچPi، تلقیح با قارچ Trichو تلقیح همزمان دو قارچ)بود. نتایج تجزیه رگرسیونی بیانگر خطی بودن پاسخ بعضی از صفات از جمله قطر ساقه، تعداد برگ سبز در بوته، وزن تر و خشک شاخساره و محتوای نسبی آب برگ (RWC) نسبت به سطوح شوری بود. این صفات، با افزایش غلظت NaCl از صفر تا 240 میلی­ مولار، بین 13 تا 43 درصد کاهش نشان دادند. از طرفی، عکس­ العمل صفاتی چون ارتفاع بوته، وزن تر و خشک ساقه، و وزن تر برگ به ­صورت کاهشی ولی از نوع معادل ها­ی دو تکه­ ای بود. از سوی دیگر، پیش­ تیمار بذر با قارچ‏های همزیست به ویژه Pi و Trich+Pi رشد رویشی و محتوای آب نسبی برگ را به صورت قابل ­توجهی افزایش داد. همچنین نشت الکترولیت در اثر افزایش تنش شوری روند افزایشی داشت ولی پیش‏ تیمار زیستی بذر شیب افزایش آن را نسبت به تیمار شاهد کاهش داده و از آسیب بیشتر به گیاه جلوگیری کرد. در مجموع، نتایج بیانگر نقش مثبت همزیستی بذر گندم با قارچ‌های P. indica و T. virens به ­ویژه در شرایط شور می­باشد.

کلیدواژه‌ها


Al-Karaki, G.N., 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza. 10: 51-54.
Azari, A., S.A.M. Modares Sanavi, H. Askari, F. Ghanati, A.M. Naji and B. Alizade, 2012. Effect of salinity stress on morphological and physiological of canola and turnip (Brassica napus and B. rapa). (In Persian, with English Abstract) Iran. J. Crop Sci. 14: 121-135.
Anith, K.N., K.M. Faseela, P.A. Archana and K.D. Prathapan, 2011. Compatibility of Piriformospora indica and Trichoderma harzianum as dual inoculants in black pepper (Piper nigrum L.). Symbiosis. 55: 11–17.
Askew, D.J., and M.D. Laing. 1993. An adapted selective medium for the quantitative isolation of Trichoderma species. Plant Pathol. 42: 686–690.
Bakhshandeh, E., A. Soltani, E. Zeinali and M. Kallate-Arabi. 2012. Prediction of plant height by allometric relationships in field-grown wheat. Cereal Res. Commun. 40: 487-496.
Battacharjee, S.,and A.K. Mukherjee, 1996. Ethylene evolution and membrane lipid peroxidation as indicators of salt injury in leaf tissues of Amaranthus seedlings. Indian J. Exp. Biol. 34: 279–290.
Bennett, A.J., and J.M. Whipps. 2008. Dual application of beneficial micro-organisms to seed during drum priming. Appl. Soil Ecol. 38:83-89.
Chang, Y.C., Y.C. Chang, R. Baker, O. Kleifeld and I. Chet, 1986. Increased growth of plants in the presence of the biological control agent T. harzianum. Plant Dis. 70: 145-148.
Colmer, T.D., T.J. Flowers and R. Munns, 2006. Use of wild relative to improve salt tolerance in wheat. J. Exp. Bot. 57: 1059-1078.
Diego, A.M., M.R.C. Gulotta, A. Martinez and M.A. Oliva, 2004. The effect of salt stress on growth, nitrate reduction and proline and glycinebetaine in Prosopis alba. Brazilian J. Plant Physiol. 16: 39-46.
Emami, A, 1996. Approaches of plant analysis Water and soil institute. Tech. j. 1: 982.
El-Hendawy, S.E., H. Yuncai, G.M. Yakoutb, A.M. Awad, S.E. Hafiz and U. Schmidhalter, 2005. Evaluating salt tolerance of wheat genotypes using multiple parameters. Europ. J. Agron. 22: 243–253.
Feng, G., Li, X.L, Zhang, F.S, Tian, C.Y, and Tang, C. 2002. Improved tolerance of maize plant to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza. 12: 185-190.
FAO, 2010. FAO statistical databases. Food and Agriculture Organization. Available at http://www.faostat.fao.org.
Fricke, W., and W.S. Peter, 2002. The biophysics of leaf growth in salt-stressed. A study at the cell level. Plant Physiol. 129: 374-388.
Farooq, S., and F. Azam, 2006. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. J. Plant Physiol. 163: 629-637
Ghabooli, M., F. Shahriyari, M. Sepehri, H. Marashi and Gh. Hossieni Salkadeh. 2011. Effect of endophytic fungus Piriformospora indica on some properties of barley (Hordeum vulgare L.) under drought stress. (In Persian) J. Agroecol. 3:328-333.
Gravel, V., H. Antoun and R.J. Tweddell, 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol. Biochem. 39: 1968-1977.
Hajinia, S., M.J. Zare, A. Mohammadi Goltape and F. Rejali, 2010. Effect of Piriformosporaindica fungi and Azospirillum Sp. Bacteria on salt tolerance of wheat (Triticum aestivum cv. Sardary). J. Environ. Stress. (In persian) Crop Sci. 4: 21-31.
Kaefer, E. 1977. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv. Genet. 19: 33–131.
Kurban, H., H. Saneoka, K. Nehira, R. Adilla, G.S. Premachandra and K. Fujita, 1999. Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.). Soil Sci. Plant Nutr. 45: 851–862.
Kumari, R., H. Kishan, Y.K. Bhoon and A. Varma. 2003. Colonization of cruciferous plants by Piriformosporaindica. Curr. Sci.85: 1672 –1694.
Kapoor, R., B. Giri and K.G. Mukerji, 2004. Improved growth and essential oil yield and quality in Foeniculum vulgare Mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour. Technol. 93:307-311.
Kafi, M. 1998. Effect of salinity on photosynthetic of sensitive and tolerant wheat varieties. The fifth Congress abstracts Crop Iran.
Manafi, H. 2010. Influence of mycorrhizosphere on soil hydraulic properties and tomato tolerance to water deficit stress. MSc Thesis, Univ of Tabriz, Iran.
Mohammad, M., R. Shibli, M. Ajouni and L. Nimri, 1998. Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition. J. Plant Nutr. 21: 1667–1680.
Mirmohamadi Meybodi, S.A.M., and B. Ghareyazi. 2002. Physiological aspects and breeding of salinity stress in plants. Esfahan Univ.
Mass, E.V., G.J. Hoffman. 1977. Crop tolerance current assessment. J. Irrig. Drain Div. 103:115-134.
Mastouri, F., Th. Björkman, G.E. Harman. 2010. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Biol. Control. 100: 1213-1221.
Mahmood, S., Sh. Iram and H.R. Athar, 2003. Intra-specific various quantitative and qualitative attributes under differential salt region. J. Res. Sci.14:177-186.
Mottaghian, A., H, Pirdashti, M.A, Bahmanyar, A. Shahsavari and R, Hasanpour, 2009. Effect of three Trichoderma species and different amounts of enriched municipal waste compost on growth parameters in spinach (Spinacia oleracea). In: Proceedings of 5th International Scientific Conference of Iran and Russia on Agricultural Development Problems. Saint Petersburg, Russia, 8-9 October: 267-270.
Mottaghian, A., H. Pirdashti., M.A. Bahmanyar, A. Shahsavari and R. Hasanpour. 2013. Response of growth characteristics and nutrients uptake of basil (Ocimum basiilicum L.) to concomitant use of municipal waste compost and three species of Trichoderma. (In Persian, With English abstract). Ir J. Med. Aromat. Plants. 29: 358-372.
Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239-250.
Nasir Khan, M., M.H. Siddiqui, F. Mohammad, M. Mansoor, A. Khan and M. Naeem, 2007.Salinity induced changes in growth, enzyme activities, photosynthesis, proline accumulation and yield in linseed genotypes. World J. Agri. Sci. 5: 685-695.
Levitt, J. 1980. Responses of plants to environmental stresses. Water, Radiation, Salt and Other Stresses. 2nd Vol. Academic Press, New York.
Paul, E.A and F.E. Clark, 1989. Soil Microbiology and Biochemistry, Academic Press, London.
Prasad, R., U.S. Bagde, P. Puspangadan and A. Varma, 2008. Pharmacological Aspects and Study Involving Piriformospora indica on Bacopa monniera L. Int. J. Integrat. Biol. 3:100-120.
Peskan-Berghoefer, T., B. Shahollaria, PH. Giong, S. Hehl, C. Markerta, V. Blanke, G. Kost, A. Varmaand R. Oelmeuller, 2004. Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmatic reticulum and at the plasma membrane. Physiol. Plant. 122: 465 – 477.
Rai, M., D. Acharya, A. Singh and A. Varma, 2001. Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza. 11: 123–138.
Rasico, A., M.M. Russa, L. Azzucco, C. Plantani, G. Nisastro and N.D. Fonx, 2001. Enhanced osmotolerance of wheat selected for potassium accumulation. Plant Sci. 160: 41-448.
Rodriguez, P., A. Torrecillas, M.A. Morales, M.F. Ortuno and M. J. Sanchez-Blanco, 2005. Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus Maritimus plants. Environ. Exp. Botany. 53: 113-123.
Reggiani, R. Bozo and A. Bertani, 1995. The effects of salinity on early seeding growth of seeds of three wheat cultivar. Can. J. Plant Sci. 75: 175-177.
Sepehri, M., N. Saleh Rastin, G. Hossieni Salkedeh and M. Khayam Nekoui. 2009. Effect of endophytic fungus Piriformospora indica on growth and resistance of H. vulgare L. to salinity stress. (In Persian). Rangeland J. 3:508-518.
Salimi Tamali, N., F. Seraj, H. Pirdashti, Y. Yaghoubian. 2014. The effect of seed biopriming by Piriformospora indica and Trichoderma virens on the growth, morphological and physiological parameters of mung bean (Vigna radiate L.) seedlings. (In Persian, With English abstract). Seed Sci. Res. 1:75-90.
Schonfeld, M.A., R.C. Johnson, B. Carver and D.W. Morhinweg, 1988. Water relation in winter wheat as drought resistance indicator. Crop Sci. 28: 526-531.
Sharma, H.S.S., M. Kilpatrick, F. Ward, G. Lyons and Burns. L, 1999. Colonization of phase II compost by biotypes of Trichoderma harzianum and their effect on mushroom yield and quality. Appl. Microbiol Biotechnol. 51: 572-578
Shahsavari, A., H. Pirdashti, A. Motaghiyan and M.A. Tajik Ghanbari. 2010. Response of wheat (Triticum aestivum L.) growth parameters and yield to co-inoculation of farmyard manure, Trichoderma spp. and Psudomunas spp. (In Persian) J. Agroecol. 2:448-458.
Soltani, A. 2012. Use of SAS software in statistical analysis. Publications univ of Mashhad.
Teutonica, R.A., J.P. Palta and T.C. Osborn, 1993. In vitro freezing tolerance in relation to winter survival ofrapeseed cultivars. Crop Sci. 33: 103-107.
Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255: 571-586.
Yano-melo, A.M., J.D. Saggin, L.C Maia. 2003. Tolerance of mycorrhized banana (Musa sp.cv.Pacovan ) plantlets to saline stress. Agric. Ecosyst. Environ. 95: 343-348.
Yazdani, M., H. Pirdashti, M.A. Tajik and M.A. Bahmanyar. 2009. Effect of Trichoderma spp. and different organic manures on growth and development in soybean (Glycine max L. Merril). Electeron. J. Crop Prod. 1: 65-82.
Yarnia, M., H. Heydari Sharif Abad, A. Hashemi Dezfuli, F. Rahim Zadeh Khui andA. ghalavand. 2011. Evaluation of tolerance to salinity in alfalfa lines (Medicagosativa L.). (In Persian) Ir J. Agri. Sci. 3(4): 12-26.
Zarea, M. J., S. Hajinia, N. Karimi, E. Mohammadi Goltapeh, F. Rejali, A. Varma, 2012a. Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol. Biochem. 45: 139-146.
Zarea, M.J., P. Chordia and A. Varma, 2012b. Piriformospora indica versus Salt Stress, IN: Sebacinales (A. Varma, G. Kost and R. Oelmüller). Springer-Verlag.