بهبود صفات و شاخص های جوانه زنی بذر چغندر قند با استفاده از پرایمینگ با نانو لوله های کربنی چند دیواره

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات آموزش و ترویج کشاورزی

2 عضو هیات علمی بخش تحقیقات نانوتکنولوژی، پژوهشکده بیوتکنولوژی کشاورزی، سازمان تحقیقات آموزش و ترویج کشاورزی

3 عضو هیات علمی موسسه تحقیقات اصلاح و تهیه بذر چغندرقند، سازمان تحقیقات آموزش و ترویج کشاورزی

چکیده

در این تحقیق، اثر نانوهیدروپرایمینگ با نانولوله­ کربنی چند دیواره بر بهبود شاخص­های جوانه­ زنی و رشد یک رقم منوژرم چغندرقند در مقایسه با هیدروپرایمینگ مورد مطالعه قرار گرفت. هیدروپرایمینگ با آب و نانوهیدروپرایمینگ با سه غلظت کلویید نانولوله کربنی بر پایه آب به عنوان چهار غلظت نانولوله کربنی (صفر، 10، 20 و 40 پی پی ام)، چهار مدت زمان پرایمینگ و دو مدت زمان نگهداری بذر پس از پرایمینگ، به عنوان تیمارهای آزمایش در قالب طرح کاملا تصادفی با سه تکرار برای چغندرقند رقم پارس، در شرایط آزمایشگاه انجام شد. صفات سرعت جوانه­ زنی، درصد جوانه­ زنی، طول ریشه، طول ساقه­ چه، وزن تر، وزن خشک، و بنیه جوانه اندازه­ گیری و محاسبه شدند. نتایج تجزیه واریانس نشان داد اختلاف بین تیمارها برای کلیه صفات مورد مطالعه در سطح 1% معنی دار بود.  نتایج مقایسه میانگین گروه­های تیماری نشان داد که نانوهیدروپرایمینگ به شکل معنی­ داری باعث بهبود صفات سرعت جوانه­زنی، درصد جوانه­ زنی و بنیه جوانه رقم پارس چغندرقند در مقایسه با هیدروپرایمینگ شده است. علاوه براین، نتایج مربوط به گروه­ یندی داده­ها در گروه نانولوله کربنی چند دیواره نشان داد که غلظت 40 پی­ پی­ ام نانولوله کربنی در زمان پرایمینگ 18 ساعت و 60 روز پس از پرایمینگ به طور معنی­ داری باعث بهبود صفات جوانه­ زنی بذرها شدند. 

کلیدواژه‌ها


Agrawal, S. and P. Rathore, 2014. Nanotechnology Pros and Cons to Agriculture: A review. Int. J. of Curr. Microbiol. and Appl. Sci. 3(3):43-55.

Alavi, Z.S., H. Roushanfekr, P. Hasibi, and M. Mesgarbashi. 2012. Effect of Osmo and Hydro-priming on the rate and percent of germination of sugar beet genotypes under salt stress. Proc. Second Conf. Seed Sci. Technol.- Mashhad (In Persian).

Basra, S.M.A., M. Farooq. K. Hafeez and N. Ahmad, 2004. Osmohardening: a new technique for rice seed invigoration. Int. Rice. Res. Notes, 29: 80-81.

Campbell, L.G., and J.W. Enz. 1991. Temperature effects on sugar beet seedling emergence. J. of Sugar Beet Res. 28:129-140.

Chegini, M.A., and V. Yousef-Abadi, 2006. The effect of processing (priming) on the quality of sugar beet seed. Final report. Sugar Beet Seed Inst. (In Persian).

Durrant, M.J., S.J. Mash, and K.W. Jaggard. 1993. Effects of seed advancement and sowing date on establishment, bolting and yield of sugar beet. J. Agric. Sci. Cambridge. 121: 333-341.

Foti, R., K. Abureni. A. Tigere. J. Gotosa and J. Gerem, 2008. The efficacy of different seed priming osmotica on the establishment of maize (Zea mays L.) caryopses. J. Arid. Environ. 72: 1127-1130.

Govahi, M., M.J. Arvin, and G. Safari. 2007. Incorporation of plant growth regulators into the priming solution improves sugar beet germination, emergence and seedling growth at low-temperature. Pak. J. Biol. Sci., 10(19): 3390-3394.

Haghighi, M., and Z. Afifi Pour. 2011. The effect of priming with carbon nanotubes, nano-titanium and copper nanoparticles on germination characteristics of onion, First National Congress of Science and New Technologies of Agriculture, Zanjan, Zanjan Univ. (In Persian).

Hossini, A., and A. Koochaki. 2007. The effect of different priming treatments on germination rate and percentage of four varieties of sugar beet seed. J. Iranian Agric. Res., No. 9, pp. 69-76 (In Persian).

Husen, A. and K.S. Siddiqi. 2014. Carbon and fullerene nanomaterials in plant system. J. Nanobiotechnol. 12:16.

Jabbari, R., M. Amini Dahaghi, F. Ganji Arjanki, and K. Agahi. 2010. The effects of priming time and method on germination of cumin (Cuminum cyminum L). School. Agric. Sci., Issue 4, pp. 23-30 (In Persian).

Jalilian, A., and R. Tavakol-Afshari, 2004. Osmopriming effect on sugar beet seed germination under drought stress. J. Agric. 27 (2): 23-36 (In Persian).

Ke, P.C., and R. Qiao. 2007. Carbon nanomaterials in biological systems. J. Phys. Condense Matter, 19:373101–373125.

Khodakovskaya, M., E. Dervishi, M. Mahmood, Y. Xu, Z. Li, F. Watanabe, and A.S. Biris. 2009. Carbon Nanotubes Are Able To Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth. ACS Nano, 3 (10), pp 3221–3227.

Kuppusamy, N. and U. Ranganathan. 2014. Storage potential of primed seeds of okra (Abelmoschus esculentus) and beet root (Beta vulgaris). Aust. J. Crop Sci. 8(9) 1290-1297.

Lin, C., B. Fugetsu, Y. Su, F. Watari. 2009. Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J. Hazard. Mater. 170, 578-583.

Morla, S., C.S.V. Ramachandra, R. Chakrapani.  2011. Factors Affecting Seed Germination and Seedling Growth of Tomato Plants cultured in Vitro Condition. J. Chem. Biol. Phy. Sci. Vol.1, N0.2, Sec. B.328-334.

Murungu, F.S., P. Nyamugafata, C. Chiduza, L.J. Clark, and W.R. Whalley. 2003. Effects of seed priming aggregate size and soil matric potential on emergence of cotton (Gossypium hirsutum L.) and Maize (Zea mays L.). Soil and Tillage Res. 74: 161- 168.

Nair, R., S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida, D.S. Kumar. 2010. Nanoparticulate material delivery to plants. Plant Sci. 179, 154-163.

Phartyal, S.S., R.C. Thapliyal, J.S. Nayal, M.S. Rawat, G. Joshi. 2003. The influences of temperature on seed germination rate in Himalayan elm (Ulmus Wallichiana). Seed Sci. Technol. 31:83-93.

Salehi M., and F. Tamaskony. 2009. Effect of priming on germination and seedling growth of canola compared with nanosilver under salt stress. J. Plant Sci. Res. Number 16, No. 4. pp 57-52 (In Persian).

Sliwinska, E, E. Jendrzejczak. 2002. Sugar-beet seed quality and DNA synthesis in the embryo in relation to hydration–dehydration cycles. Seed Sci. Technol. ;30:597–608.

Srinivasan, C. and R. Saraswathi. 2010. Nano-agriculture – carbon nanotubes enhance tomato seed germination and plant growth. Curr. Sci., vol. 99, No. 3, 10.

Tan, X., B. Fugetsu. 2007. Multi-walled carbon nanotubes interact with cultured rice cells: evidence of a self-defence response. J. Biomed. Nanotechnol. 3, 285-288.

Tan, X., C. Lin, B. Fugetsu. 2009. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon: 47, 3479-3487.

Torre-Roche, R., J. Hawthorne, Y. Deng, B. Xing, W. Cai, L.A. Newman, Q. Wang, X. Ma, H. Hamdi, J.C. White. 2013. Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ. Sci. Technol., Volume 47(21), pp 12539-12547.

Xiao-fang, S., Z. Qingsong and L. Youlinag, 2000. Regulation of salt tolerance of cotton plants at seedling emergence stage by soaking seeds in pix (DPC) and CaCl solutions. Jaingsu J. Agric. Sci., 16: 204-207.