تاثیر دما بر جوانهزنی و تحرک ذخایر پروتئینی سه رقم گندم نان

نوع مقاله: مقاله پژوهشی

نویسنده

دانشیار گروه زراعت و اصلاح نباتات دانشکده علوم کشاورزی دانشگاه محقق اردبیلی

چکیده

به منظور بررسی اثر دما بر تحرک ذخایر پروتئینی ارقام گندم و برخی از ویژگیهای گیاهچه آزمایشی به صورت فاکتوریل در قالب طرح کاملا تصادفی در آزمایشگاه تکنولوژی بذر دانشکده علوم کشاورزی دانشگاه محقق اردبیلی با سه تکرار به اجرا درآمد. تیمارهای آزمایش شامل سه دمای جوانهزنی (10 ،20 و 30 درجه سانتی گراد) و سه رقم گندم (سرداری، فینیکان و MV17 (بود. صفات مورد اندازهگیری شامل درصد و سرعت جوانهزنی، وزن خشک گیاهچه، میزان پروتئین و پروتئاز، شاخص تنفس و توزیع ماده خشک به بخشهای مختلف گیاهچه بود. نتایج نشان داد که در همه ارقام دمای 20 درجه موجب نیل به حداکثر درصد، سرعت و میانگین مدت زمان جوانه زنی گردید. بیشترین مقدار پروتئین باقی مانده بذر (7/8 (% در رقم سرداری و دمای 10 درجه و کمترین فعالیت آنزیم پروتئاز (63/4 واحد بر میلی گرم پروتئین) در همین دما، ولی در رقم فینیکان مشاهده شد. حداکثر میزان مصرف ذخایر بذر در فرایند تنفس (21/20 (در رقم MV17 و در دمای 30 درجه مشاهده شد. بیشترین میزان کارایی تحرک ذخایر پروتئینی بذر به طور مشترک مربوط به ارقام فینیکان و MV17) به ترتیب 23/1 و 2/1 (در دمای 20 درجه بود. تخصیص مواد غذایی بذر برای رشد ریشه چه و ساقه چه در ارقام و دماهای مختلف متفاوت بود و رقم MV17 حداکثر تخصیص به ریشه چه (27/6 (%و رقم فینیکان حداکثر تخصیص به ساقه چه (84/15 (%را در دمای 20 درجه نشان داد. کارایی تحرک ذخایر پروتئینی هر سه رقم در دمای 20 درجه یکسان بود، ولی رقم MV17 در دمای 10 درجه و رقم فینیکان در دمای 30 درجه کارایی بیشتری داشتند. در مجموع، بالا بودن درصد جوانهزنی رقم MV17 را در دمای 20 درجه میتوان به بیشتر بودن فعالیت آنزیم پروتئاز نسبت داد.

کلیدواژه‌ها


Akram Ghaderi, F., A.Soltani and H.R. Sadeghipour, 2008. Effect of temperature and water potential on
germination of medicinal pumpkin (Cucurbita pepo. convar. pepo var. styriaca), black cumin (Nigella sativa
L.) and borago (Borago officinalis L.). J. Agric. Sci. Natur. Resour. 15(5): 157-170.
Anonymous, 2014. A guide to kjeldahl nitrogen determination methods and apparatus. LABCONCO. Texas.
USA. Accessed online at www.ExpotechUSA.com.
Baskin, C.C., and J.M. Baskin, 2001. Seeds: ecology, biogeography, and evolution of dormancy
andgermination. Academic Press, San Diego, California, p 666.
Blum, A. and B.Sinmena, 1994. Wheat seed endosperm utilization under heat stress and its relation to
thermotolerance in the autotrophic plant.Field Crops Res. 37:185–191.
Bradford, K.J. 2002. Application of hydrothermal time to quantifying and modeling seed germination and
dormancy. Weed Sci. 50: 248-260.
Eessmine, J., S.Ammar,and S.Bouzid, 2010. Impact of heat stress on germination and growthin higher
plants: physilogical, Biochemical and Molecular Repercussions and Mechanism of Defence.J. Biol.Sci.
10(6):565-572.
Ellis, R.A. and E.H. Roberts, 1981. The quantification of ageing and survival in orthodox seeds. Seed Sci.
Technol. 9: 373-409.
Foley, M.E. and S.A. Fennimore, 1998. Genetic basis for seed dormancy. Seed Sci. Res. 8: 173-179.
Hasan, M. A., J. U., Ahmed, M. M.Hossain, and M.A. Ullah, 2004. Germination characters and
seed reserve mobilization during germination of different wheat genotypes under variable
temperature regimes. J.Natan.Sci.Foundation Srilanka. 32:97-107.
Holwerda, B.C. and J.C. Rogers, 1992. Purification and characterizationofaleurain. Plant Physiol.99:848-
855.
Kamaha, C. and J.D. Maguire, 1992. Effect of temperature on germination of six winter wheatcultivars.
Seed Sci. Technol. 20: 181-185.
Kebreab, E. and A.J. Murdoch, 2000. The effect of water stress on the temperature range forgermination of
Orobanch esaegyptiaca seeds. Seed Sci. Res. 10: 127-133.
Kumar Shaha, R., N.K., Sana, N., Roy, K.K.Biswas, and A.Mamun, 2002. Partial purification and
characterization of protease from germinating wheat seeds (Triticum aestivum L.). Pak. J. Biol. Sci. 5(3):317-
320.
Meyer, S.E. and R.L. Pendleton, 2000. Genetic regulation of seed dormancy in Purshiatridentata
(Rosaceae). Ann. Bot. 85: 521-529.
Michalcová, E., E., Potocká, D.Chmelová, and M.Ondrejovič, 2012. Study of wheat protein degradation
during germination.J Microbiol. Biotech. Food Sci. 1(6):1439-1447.
Qiu, J., Y., Bai, B.Coulman, and J.T. Romo, 2006. Using thermal time modelsto predict seedling
emergence of orchardgrass (Dactylis glomerata L.) underalternating temperature regimes. Seed Sci. Res. 16:
261-271.
Soltani, A., S., Galeshi, E.Zeinali, and N. Latifi, 2002. Germination, seed reserve utilization and seedling
growth of chickpea as affected by salinity and seed size. Seed Sci. Technol. 30: 51-60.
Soltani, A., M.Gholipoor, and E.Zeinali, 2006. Seed reserve utilization and seedling growth ofwheat as
affected by drought and salinity. Env. Exp. Bot. 55:195-200. 15.
Tavakkol Afshari, R., A. Abbasi Suraki, and A. Ghasemi, 2008. Seed technology and its biological basis.
University of Tehran Press.
Thygerson, T., J.M., Harris, B.N., Smith, L.D., Hansen, R.L. Pendleton, and D.T. Booth, 2002.
Metabolic response to temperature for six populations ofwinterfat (Eurotia lanata). Thermochimica Acta.
394: 211-217.
Windauer, L., A.Altuna, and R. Benech-Arnold, 2007.Hydrotime analysis of Lesqueralla fendleri seed
germination response to priming treatments.Indust. Crops Products. 25: 70-74.
Zeinali, E., A., Soltani, S.Galeshi, and S.J. Sadati, 2010. Cardinal temperatures, response to temperature
and range of thermal tolerance for seed germination in wheat (Triticum aestivum L.) cultivars. Electronic J.
Crop Production. 3 (3): 23-42.